Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Med Res ; 28(1): 433, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37828580

RESUMO

BACKGROUND: The development and maintenance of normal bone tissue is maintained by balanced communication between osteoblasts and osteoclasts. The invasion of cancer cells disrupts this balance, leading to osteolysis. As the only bone resorbing cells in vivo, osteoclasts play important roles in cancer-induced osteolysis. However, the role of 3-phosphoinositide-dependent protein kinase-1 (PDK1) in osteoclast resorption remains unclear. METHODS: In our study, we used a receptor activator of nuclear factor-kappa B (RANK) promoter-driven Cre-LoxP system to conditionally delete the PDK1 gene in osteoclasts in mice. We observed the effect of osteoclast-specific knockout of PDK1 on prostate cancer-induced osteolysis. Bone marrow-derived macrophage cells (BMMs) were extracted and induced to differentiate osteoclasts in vitro to explore the role of PDK1 in osteoclasts. RESULTS: In this study, we found that PDK1 conditional knockout (cKO) mice exhibited smaller body sizes when compared to the wild-type (WT) mice. Moreover, deletion of PDK1 in osteoclasts ameliorated osteolysis and rPDK1educed bone resorption markers in the murine model of prostate cancer-induced osteolysis. In vivo, we discovered that osteoclast-specific knockout of suppressed RANKL-induced osteoclastogenesis, bone resorption function, and osteoclast-specific gene expression (Ctsk, TRAP, MMP-9, NFATc1). Western blot analyses of RANKL-induced signaling pathways showed that conditional knockout of PDK1 in osteoclasts inhibited the early nuclear factor κB (NF-κB) activation, which consequently suppressed the downstream induction of NFATc1. CONCLUSION: These findings demonstrated that PDK1 performs an important role in osteoclastogenesis and prostate cancer-induced osteolysis by modulating the PDK1/AKT/NF-κB signaling pathway.


Assuntos
Osteólise , Neoplasias da Próstata , Masculino , Animais , Camundongos , Humanos , Osteoclastos/metabolismo , Osteogênese/genética , Osteólise/genética , Osteólise/induzido quimicamente , Osteólise/metabolismo , NF-kappa B/metabolismo , Proteínas Quinases/efeitos adversos , Proteínas Quinases/metabolismo , Modelos Animais de Doenças , Diferenciação Celular/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Camundongos Endogâmicos C57BL
2.
Front Pharmacol ; 13: 925568, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36071834

RESUMO

The death of spinal motor neurons (SMNs) after spinal cord injury (SCI) is a crucial cause, contributing to a permanent neurological deficit. Total flavonoids of hawthorn leaves (TFHL) have been confirmed to have potentially therapeutic for SCI. Nonetheless, the roles and mechanisms of TFHL in recovering neuromotor function and regenerating axons of SMNs have not been fully elucidated. In this study, TFHL was applied to treat rats with SCI and injured SMNs for 7 days. In vivo experiment, rats with SCI were evaluated by a BBB (Basso-Beattie-Bresnahan) score to assess their motor functional recovery. The morphology, microstructure, apoptosis, Nissl bodies, and autophagy of SMNs in spinal cord tissue were detected by Hematoxylin-eosin (HE) staining, transmission electron microscopy, TUNEL staining, Nissl staining, and immunohistochemistry respectively. In vitro experiment, the co-culture model of SMNs and astrocytes was constructed to simulate the internal environment around SMNs in the spinal cord tissue. The cell morphology, microstructure, axonal regeneration, and autophagy were observed via optical microscope, transmission electron microscopy, and immunofluorescence. The content of neurotrophic factors in the cell culture medium of the co-culture model was detected by ELISA. Moreover, the expression of axon-related and autophagy-related proteins in the spinal cord tissue and SMNs was measured by Western Blot. We demonstrated that TFHL improved the neuromotor function recovery in rats after SCI. We then found that TFHL significantly promoted injured spinal cord tissue repair, reduced apoptosis, and improved the functional status of neurons in spinal cord tissue in vivo. Meanwhile, the cell morphology, microstructure, and axonal regeneration of damaged SMNs also obviously were improved, and the secretion of neurotrophic factors was facilitated after treatment with TFHL in vitro. Further, we revealed that TFHL promoted autophagy and related protein expression in vivo and vitro. Taken together, our study suggested that TFHL might facilitate autophagy and have neuroprotective properties in SMNs to enhance the recovery of neuromotor function of rats with SCI.

3.
Front Pharmacol ; 13: 801624, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35273495

RESUMO

Aims: Prostate cancer is a well-known aggressive malignant tumor in men with a high metastasis rate and poor prognosis. Adapalene (ADA) is a third-generation synthetic retinoid with anticancer properties. We investigated the anti-tumor activity and molecular mechanisms of ADA in the RM-1 prostate cancer cell line in vivo and in vitro. Methods: The effects of ADA on cell proliferation were estimated using the CCK-8 and colony formation assays. The wound-healing assay and the Transwell assay were employed to examine the migratory capacity and invasiveness of the cells. Flow cytometry was utilized to evaluate the cell cycle and apoptosis, and Western blotting analysis was used to assess the expression of the associated proteins. Micro-CT, histomorphological, and immunohistochemical staining were used to assess the effects of ADA on bone tissue structure and tumor growth in a mouse model of prostate cancer bone metastasis. Result: ADA dramatically inhibited cell proliferation, migration, invasiveness, and induced S-phase arrest and apoptosis. ADA also regulated the expression of S-phase associated proteins and elevated the levels of DNA damage markers, p53, and p21 after ADA treatment, suggesting that the anti-tumor effect of ADA manifests through the DNA damage/p53 pathway. Furthermore, we observed that ADA could effectively inhibited tumor growth and bone destruction in mice. Conclusion: ADA inhibited prostate cancer cell proliferation, elicited apoptosis, and arrested the cell cycle in the S-phase. ADA also slowed the rate of tumor growth and bone destruction in vitro. Overall, our results suggest that ADA may be a potential treatment against prostate cancer.

4.
Am J Transl Res ; 13(10): 11491-11500, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34786075

RESUMO

BACKGROUND AND OBJECTIVE: This study retrospectively analyzed the clinical and imaging features of TM mycosis complicated with bone destruction with the aim to improve understanding, diagnosis, and treatment. METHODS: Data of hospitalized TM-infected patients with bone destruction from October 2012 to May 2019 were collected. The clinical and imaging features of the disease were comprehensively analyzed. RESULTS: All 35 patients were non-HIV infected, but some had underlying co-morbid illnesses. The duration of the disease was 1-36 months (median: 5 months). Fever, anemia, weight loss, and respiratory symptoms were the main clinical manifestations of the patients. There were 18 patients (51.4%) who had bone pain. Peripheral blood leukocyte count increased significantly in 27 patients (77.1%). The neutrophil count increased in 28 patients (80%). C-reactive protein (CRP) and immunoglobulin G levels increased in 93.3% (14/15) and 82.1% (23/28) patients, respectively. The imaging examination showed osteolytic lesions, which were multiple in several bony areas. CONCLUSION: Young and middle-aged patients with non-AIDS TM complicated with underlying diseases should be especially cautious in case of occurrence of bone destruction. The main clinical manifestations of patients with TM complicated with bone destruction were pulmonary symptoms and bone and joint pain, which could be accompanied by progressive consumptive diseases.

5.
J Cell Physiol ; 236(7): 5432-5445, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33377210

RESUMO

Osteoblasts are the main functional cells of bone formation, and they are responsible for the synthesis, secretion, and mineralization of the bone matrix. Phosphatidylinositol-3-kinase/Akt is an important signaling pathway involved in the regulation of cell proliferation, death, and survival. Some studies have shown that 3-phosphoinositide-dependent protein kinase-1 (PDK-1) plays an important role in the phosphorylation of Akt. In the present study, an osteocalcin (OCN) promoter-driven Cre-LoxP system was established to specifically delete the PDK-1 gene in osteoblasts. It was found that the size and weight of PDK-1 conditional gene knockout (cKO) mice were significantly reduced. von Kossa staining and microcomputed tomography showed that the trabecular thickness, trabecular number, and bone volume were significantly decreased, whereas trabecular separation was increased, as compared with wide-type littermates, which were characterized by a decreased bone mass. A model of distal femoral defect was established, and it was found that cKO mice delayed bone defect repair. In osteoblasts derived from PDK-1 cKO mice, the alkaline phosphatase (ALP) secretion and ability of calcium mineralization were significantly decreased, and the expressions of osteoblast-related proteins, runt-related transcription factor 2, OCN, and ALP were also clearly decreased. Moreover, the phosphorylation level of Akt and downstream factor GSK3ß and their response to insulin-like growth factor-1 (IGF-1) decreased clearly. Therefore, we believe that PDK-1 plays a very important role in osteoblast differentiation and bone formation by regulating the PDK-1/Akt/GSK3ß signaling pathway.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Regeneração Óssea/genética , Osteoblastos/metabolismo , Osteogênese/genética , Animais , Diferenciação Celular/genética , Camundongos , Camundongos Knockout
6.
Mol Med Rep ; 23(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33300048

RESUMO

Osteoblasts are the main functional cells in bone formation, which are responsible for the synthesis, secretion and mineralization of bone matrix. The PI3K/AKT signaling pathway is strongly associated with the differentiation and survival of osteoblasts. The 3­phosphoinositide­dependent protein kinase­1 (PDK­1) protein is considered the master upstream lipid kinase of the PI3K/AKT cascade. The present study aimed to investigate the role of PDK­1 in the process of mouse osteoblast differentiation in vitro. In the BX­912 group, BX­912, a specific inhibitor of PDK­1, was added to osteoblast induction medium (OBM) to treat bone marrow mesenchymal stem cells (BMSCs), whereas the control group was treated with OBM alone. Homozygote PDK1flox/flox mice were designed and generated, and were used to obtain BMSCsPDK1flox/flox. Subsequently, an adenovirus containing Cre recombinase enzyme (pHBAd­cre­EGFP) was used to disrupt the PDK­1 gene in BMSCsPDK1flox/flox; this served as the pHBAd­cre­EGFP group and the efficiency of the disruption was verified. Western blot analysis demonstrated that the protein expression levels of phosphorylated (p)­PDK1 and p­AKT were gradually increased during the osteoblast differentiation process. Notably, BX­912 treatment and disruption of the PDK­1 gene with pHBAd­cre­EGFP effectively reduced the number of alkaline phosphatase (ALP)­positive cells and the optical density value of ALP activity, as well as the formation of cell mineralization. The mRNA expression levels of PDK­1 in the pHBAd­cre­EGFP group were significantly downregulated compared with those in the empty vector virus group on days 3­7. The mRNA expression levels of the osteoblast­related genes RUNX2, osteocalcin and collagen I were significantly decreased in the BX­912 and pHBAd­cre­EGFP groups on days 7 and 21 compared with those in the control and empty vector virus groups. Overall, the results indicated that BX­912 and disruption of the PDK­1 gene in vitro significantly inhibited the differentiation and maturation of osteoblasts. These experimental results provided an experimental and theoretical basis for the role of PDK­1 in osteoblasts.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Células da Medula Óssea/enzimologia , Diferenciação Celular/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Células-Tronco Mesenquimais/enzimologia , Osteoblastos/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/antagonistas & inibidores , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/biossíntese , Animais , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA